T	IRSP.	-Summer	2019 -	Oniz	#
·	יוטער	Summer	2017 -	Ouiz	TT.

1	List 3	stens of	the	Scient	ific	Method	4
1	Listo	stebs of	. une i	scieni	HIC	Memo	J.

a) Observation/question

b) **Hypothesis**

c) <u>Experiment</u> ____

2) How many significant figures are in each of the following numbers?

a) 6.626x10⁻³⁴ _____ b) 0.0065300 _____ <u>5</u> c) 100 _____1

3) Round each of the following numbers to 3 significant figures. (Scientific notation is optional on this question)

a) 0.0659822 <u>0.0660 or 6.60x10⁻²</u> b) 0.00547330 <u>0.00547</u> c) 8265391000 <u>82700000000 or</u>

4) Perform the following calculations and report your answers with the correct number of significant figures.

c)
$$\frac{2160.0}{27}$$

2868.2

0.04218 or 4.218x10⁻²

80. or 8.0x10¹

5) Perform the following conversions:. (Show your work, sig. figs count!)

$$1m = 1000 \text{ mm}$$
, $1km = 1000 \text{ meters}$, $1m = 3.281 \text{ ft}$, $1.0 \times 10^6 \text{ } \mu\text{m} = 1 \text{ m}$

A) 285, 000 mm \rightarrow km

285,000
$$mm \times \frac{1m}{1000 mm} \times \frac{1km}{1000 m} = \boxed{0.285km}$$

B) $25.0 \text{ mL} \rightarrow \text{L}$

$$25.0 \, \underline{mL} \times \frac{1L}{1000 \, \underline{mL}} = \boxed{0.0250 \underline{mL}}$$

C) 8.00 ft $\rightarrow \mu m$

$$8.00 \, \text{ft} \times \frac{1m}{3.281 \, \text{ft}} \times \frac{1000000 \, \mu m}{1m} = \boxed{0.285 \, \mu m}$$

7) Bonus--Steve experimentally found the density of Aluminum to be 2.59 g/cm³. The density of Aluminum is known to be 2.70 g/cm³. What is Steve's percent error?

% error =
$$(2.59-2.70) * 100 = 4.07\%$$

2.70